Marathon Stereo System F200060 User Manual

Marathon Sensors Inc.  
OxymitTransmitter  
Operators Manual  
 
Table of Contents  
GENERAL DESCRIPTION............................................................................................................................ 2  
SAFETY SUMMARY......................................................................................................................................3  
CONNECTIONS .............................................................................................................................................. 3  
GROUNDING AND SHIELDING .........................................................................................................................4  
PARAMETER SELECTIONS........................................................................................................................ 4  
PROCESS PARAMETERS................................................................................................................................... 4  
Process Type.............................................................................................................................................5  
Carbon Process Factor.............................................................................................................................5  
Dew Point Process Factor........................................................................................................................ 5  
Oxygen Exponent......................................................................................................................................6  
TC Type.....................................................................................................................................................6  
ANALOG OUTPUT CHANNELS .........................................................................................................................6  
CALIBRATION...............................................................................................................................................7  
PROCESS VARIABLE CALCULATIONS................................................................................................... 8  
PERCENT OXYGEN.......................................................................................................................................... 8  
PERCENT CARBON.......................................................................................................................................... 8  
DEWPOINT...................................................................................................................................................... 8  
COMMUNICATIONS..................................................................................................................................... 9  
MODBUS.........................................................................................................................................................9  
RTU Framing............................................................................................................................................ 9  
Address Field.......................................................................................................................................... 10  
Function Field.........................................................................................................................................10  
Data Field...............................................................................................................................................10  
Error Check Field (CRC)........................................................................................................................ 10  
MEMORY MAP.............................................................................................................................................12  
OPERATIONAL SPECIFICATIONS.......................................................................................................... 18  
 
NOTE:  
Please specify the following parameters when ordering a transmitter; process type, process  
range (%, ppm), thermocouple type, temperature scale F/C, analog output 1 process and  
scale, analog output 2 process and scale.  
Typical Oxygen Transmitter Calibration  
(F840030)  
Calibration  
Function  
Measured Value or  
Input  
Output / Units  
Cold Junction  
Thermocouple  
min  
Room Temp  
800°F (B type)  
standard t/c type  
°F  
°F  
Thermocouple  
max  
Millivolt  
3000°F (B type)  
standard t/c type  
0.0 mV  
°F  
Millivolts  
Millivolts  
Millivolt  
2000 mV  
Analog 1 Zero  
Analog 1 Span  
Analog 2 Zero  
Analog 2 Span  
0% O2  
20.9% O2  
800°F +/- 5°  
3000°F +/- 5°  
4.0 mA +/- 0.1  
20.0 mA +/- 0.1  
4.0 mA +/- 0.1  
20.0 mA +/- 0.1  
Typical Carbon Transmitter Calibration  
(F840031)  
Calibration  
Function  
Measured Value or  
Input  
Output / Units  
Cold Junction  
Thermocouple  
Min  
Thermocouple  
Max  
Room Temp  
MUST BE  
SPECIFIED  
MUST BE  
SPECIFIED  
0.0 mV  
°F  
°F  
°F  
Millivolt  
Millivolt  
Millivolts  
Millivolts  
2000 mV  
Analog 1 Zero  
Analog 1 Span  
Analog 2 Zero  
0% Carbon  
2.55% Carbon  
MUST BE  
SPECIFIED  
4.0 mA +/- 0.1  
20.0 mA +/- 0.1  
4.0 mA +/- 0.1  
Analog 2 Span  
MUST BE  
SPECIFIED  
20.0 mA +/- 0.1  
Page 1 of 23  
11/14/2006  
Rev. 14  
 
General Description  
The OxymitTransmitter has been designed to work as an analog or digital interface for  
any zirconia based oxygen probe used to track dew point, carbon potential, or oxygen. The  
transmitter connects to the temperature and millivolts outputs of an oxygen probe and can  
produce analog outputs proportional to the selected process value.  
The features available are:  
Isolated inputs for thermocouple and probe millivolt  
24 bit Sigma-Delta ADC for inputs.  
Serial EEPROM to store setup and calibration values.  
Two isolated self-powered 4-20mA outputs for process value and temperature.  
The transmitter makes a carbon or oxygen probe an intelligent stand alone sensor. The  
transmitter is located near the probe, preferably mounted in an enclosure. The transmitter  
mounts onto a DIN rail and requires a 24VDC power supply. It measures the probe  
temperature and millivolts. At the time of order the transmitter can be configured to  
calculate percent carbon, dewpoint, or percent oxygen from these inputs. The results of  
any of these calculations are made available via two 4-20mA loop outputs. Typically one  
first loop is set up for the process value the second loop transmits probe temperature.  
5V_A  
10  
9
RTX+  
RTX-  
5V_A  
5V_B  
+15V  
5V_B  
+24V  
12  
11  
RS485  
B
Power  
Supplies  
-15V  
+15V  
-15V  
A
24V  
COM  
ISOLATED  
ISOLATED  
5V_A  
5V_A  
44M  
+15V  
D/A  
22M  
C
C
C
1
2
ANALOG  
OUT 1  
4-20mA  
6
5
8
7
T/C INPUT  
EEPROM  
A/D  
CONV.  
mV INPUT  
-15V  
Process  
Controller  
ISOLATED  
5V_A  
+15V  
D/A  
D
D
D
14  
13  
3
4
ANALOG  
OUT 2  
4-20mA  
EVENT INPUT  
DISPLAY  
CONN.  
-15V  
Figure 1 BLOCK DIAGRAM  
Page 2 of 23  
11/14/2006  
Rev. 14  
 
Safety Summary  
All cautions and instructions that appear in this manual must be complied with to prevent  
personnel injury or damage to the Probe Transmitter or connected equipment. The  
specified limits of this equipment must not be exceeded. If these limits are exceeded or if  
this instrument is used in a manner not intended by Marathon Sensors Inc., damage to this  
instrument or connected devices could occur.  
Do not connect this device directly to AC motors, valves, or other actuators. All AC alarm  
functions must be connected through an interposing DC coil relay with a maximum coil  
load of 0.5 amps DC. The Probe Transmitter is not rated to act as a safety device. It  
should not be used to provide interlocking safety functions for any temperature or process  
functions. Alarm capabilities are provided for probe test and input faults only and are not  
to be considered or used as safety contacts in any application.  
Connections  
The Probe Transmitter has four removable terminal blocks grouped with four terminals  
each. Each terminal is a wire clamp type with a standard slot screw. Each clamp can  
accommodate AWG 24 to 12 flexible stranded wire. Maximum torque on the terminal  
screws should not exceed 0.8 Nm.  
The figure below shows the arrangement of the terminals.  
1
2
3
4
-
+
EVT EVT  
AO1  
COM NO  
LOWER  
5
6
7
8
-
+
-
+
TC  
MV  
UPPER  
UPPER  
9 10 11 12  
-
+
-
+
RS485  
24VDC  
LOWER  
13 14 15 16  
-
+
N/C N/C  
AO2  
Figure 2 Terminal Layout  
Page 3 of 23  
11/14/2006  
Rev. 14  
 
The next figure shows a schematic representation of the Probe Transmitter and typical  
connections required in the field.  
Figure 3 Schematic Connections  
Grounding and Shielding  
To minimize the pick-up of electrical noise, the low voltage DC connections and the sensor  
input wiring should be routed away from high-current power cables. Where it is  
impractical to do this, use shielded cables with the shield grounded at the Probe Transmitter  
enclosure ground as show above.  
Parameter Selections  
The following tables list the parameters available in the Probe Transmitter. Default values  
are also listed. The default values are loaded if a reset is force in the device. Changes to  
these parameters must be specified at the time of order.  
Process Parameters  
The following table shows the process selections and other parameters that effect the  
process value.  
Page 4 of 23  
11/14/2006  
Rev. 14  
 
Table 1 Process Parameters  
Parameter Name  
PROCESS TYPE  
Selection  
Default  
%O2  
Units or Options  
Range  
CARBON, DPT,  
%O2, MV  
CARB PROC FACT  
150  
0 to 1000  
DEWPT PROC FACT 150  
0 to 1000  
0 to 31  
OXYGEN EXPON  
0002  
POWER OF TEN  
TC TYPE  
B
B, C, E, J, K, N,  
NNM, R, S, T  
Process Type  
Selecting the process type determines what type of calculation the Smart Transmitter is  
going to do based on the probe millivolt and probe temperature inputs. The default process  
value for the Smart Transmitter is %O2 with an exponent selection of 2. This is the  
selection most often used in Boiler control and Combustion applications.  
Percent Carbon and dew point are typically processes that are used in steel treating  
applications. Percent Carbon is the process value most often used for the control of case  
depth or the percent of carbon in a steel hardening furnace. Dew Point is used in the control  
for endothermic generators.  
Carbon Process Factor  
The carbon process factor can be used to adjust the % carbon value. This number takes  
into account a number of assumptions that the carbon value is based on. Primary among  
these is the assumed level of CO in the atmosphere. See the Theory of Process Calculation  
section for a complete explanation of this value.  
It maybe necessary to change the apparent furnace carbon as measured by the oxygen  
probe if this value is different than actual load samples, shim stocks, or gas analysis. The  
basic rule of thumb is that an increase is the carbon process factor will decrease the  
apparent carbon level in the furnace. The default value is 150. Typical values can very  
from 50 to 400. Increase or decrease the process factor until the desired carbon level is  
achieved. A process factor that is drastically different than normal may be an indication of  
a failing probe, water or air leak in the furnace, or excess methane present. Refer to probe  
troubleshooting guides to determine what other factors maybe effecting the carbon value.  
Dew Point Process Factor  
The dew point process factor is similar to the carbon process factor but is used to adjust the  
dew point value if dew point is selected as the process value. This number takes into  
account a number of assumptions that the dew point value is based on. Primary among  
these is the assumed level of hydrogen in the atmosphere. See the Theory of Process  
Calculation section for a complete explanation of this value.  
Page 5 of 23  
11/14/2006  
Rev. 14  
 
Oxygen Exponent  
The range of oxygen is factory configured using the oxygen exponent number. Percent  
oxygen is the standard setting where the oxygen exponent is set to 2 and the output range is  
0.00% to 20.9%. For a part per million (ppm) range the exponent would be set to 6 and the  
-6  
output range of 0.00 X 10 to 99.99 X 10-6.  
TC Type  
The following table shows the available thermocouple types and the ranges. BOLD  
indicates the typical oxygen default.  
Thermocouple  
Zero ºF  
Zero °C  
Span ºF  
Span °C  
type  
B
C
E
J
K
800  
32  
32  
32  
32  
32  
32  
300  
300  
32  
425  
0
0
0
0
0
0
150  
150  
0
3000  
3000  
1300  
1300  
2300  
2300  
2000  
3000  
3000  
700  
1650  
1650  
700  
700  
1260  
1260  
1090  
1650  
1650  
370  
N
NNM  
R
S
T
The Cold Junction correction is applied to all thermocouple types.  
Analog Output Channels  
The analog outputs are factory configured to provide 4 to 20mA signals proportional to  
selectable process values.  
NOTE  
The Analog Output Channels are isolated self-powered  
current sources and do not require an external supply.  
If a chart recorder is to be used, it should have input specifications within 4 to 20 mA. If  
the recorder only responds to VDC inputs it will be necessary to add a 250 ohm dropping  
resistor across its input terminals.  
The ideal location of the recorder is adjacent to the instrument but it may be located  
remotely if the connecting wires are properly shielded. For best results, the chart recorder  
input(s) should be isolated from ground.  
Page 6 of 23  
11/14/2006  
Rev. 14  
 
Table 2 Analog Outputs  
Parameter  
Name  
Oxygen  
Default  
Possible  
Options  
Possible  
Ranges  
OUTPUT 1  
MODE  
O2  
O2, CARBON,  
DEWPT, TEMP, LIN,  
PROG  
O2 = 0 – 9999  
%C = 0.00 – 2.55  
DP = -99.9 – 212.0  
Temp = -999 – 3000  
LIN = -999 – 9999  
PROG = 0 – 4095  
O2 = 0 – 9999  
%C = 0.00 – 2.55  
DP = -99.9 – 212.0  
Temp = -999 – 3000  
LIN = -999 – 9999  
PROG = 0 – 4095  
0–20.9%  
4-20mA  
OUTPUT 2  
MODE  
TEMP  
O2, CARBON,  
DEWPT, TEMP, LIN,  
PROG  
800-3000°F  
4-20mA  
NOTE: SEE PAGE 4 FOR TYPICAL CALIBRATION VALUES.  
Calibration  
The Smart Transmitter is factory calibrated. The calibration can be verified once a year or  
according to customer calibration schedules. The instrument should be returned to the  
factory if calibration is required.  
Page 7 of 23  
11/14/2006  
Rev. 14  
 
Process Variable Calculations  
The transmitter has a selectable process calculation for percent carbon, percent oxygen, or  
dewpoint. The following equations are used to derive these values;  
Percent Oxygen  
20.95  
%O2 = -----------------------  
e(E/0.0215*Tk)  
Where: E = probe millivolts, Tk = probe temperature in degrees Kelvin.  
The 20.95 is the %O2 in air.  
Percent Carbon  
e((E-786)/(0.043102*Tk))  
%C = 5.102 ---------------------------------------------------  
(29*PF + 400)+ e((E-786)/(0.043102*Tk))  
Where: E = probe millivolts, Tk = probe temperature in Kelvin, and PF is the process  
factor.  
Dewpoint  
4238.7  
DP = -------------------------------------------------------------------- - 459.69  
6.281216 + log((29*PF+400)+(E-1267.8)/(0.05512*Tr)  
Where: E = probe millivolts, Tr = probe temperature in Rankin, PF is the process factor,  
and DP is the dewpoint in Fahrenheit.  
Page 8 of 23  
11/14/2006  
Rev. 14  
 
Communications  
The Transmitter is capable of digital communications using the Modbus protocol. This is  
possible by connecting to the half duplex RS-485 terminals using a shielded twisted pair.  
Modbus  
The MODBUS protocol describes an industrial communications and distributed control  
system (DCS) that integrates PLCs computers, terminals, and other monitoring, sensing,  
and control devices. MODBUS is a Master/Slave communications protocol, whereby one  
device, (the Master), controls all serial activity by selectively polling one or more slave  
devices. The protocol provides for one master device and up to 247 slave devices on a RS-  
485 half duplex twisted pair line. Each device is assigned an address to distinguish it from  
all other connected devices. All instruments are connected in a daisy-chain configuration.  
The instrument communicates with baud rate settings 1200, 2400, 4800, 9600, or 19.2K.  
The default baud rate is 19.2Kbuad. The default address is 1. Changes to these values can  
be made by writing to the appropriate memory register.  
The Transmitter communicates in Modbus RTU (Remote Terminal Unit) protocol using 8-  
bit binary data characters. Message characters are transmitted in a continuous stream. The  
message stream is setup based on the following structure:  
Number of bits per character:  
Start bits  
1
Data bits (least significant first)  
Parity  
8
None only (no bits for no parity)  
Stop bits  
1
Error Checking  
CRC (Cyclical Redundancy Check)  
The Transmitter recognizes three RTU commands. These are: read single I registers  
(command 4), read a single H register (command 3), and preset a single H register  
(command 6)  
In Modbus mode, the Transmitter can be only be configured for the ‘none’ parity option.  
The instrument never initiates communications and is always in receive mode unless  
responding to a query.  
RTU Framing  
Frame synchronization can be maintained in RTU transmission mode only by simulating a  
synchronous message. The instrument monitors the elapsed time between receipt of  
characters. If three and one-half character times elapse without a new character or  
completion of the frame, then the instrument flushes the frame and assumes that the next  
Page 9 of 23  
11/14/2006  
Rev. 14  
 
byte received will be an address. The follow command message structure is used, where T  
is the required character delay. Response from the instrument is based on the command.  
T1,T2,T3 ADDRESS FUNCTION DATA  
CHECKSUM  
T1,T2,T3  
8-BITS  
8-BITS  
N X 8-BITS 16-BITS  
Address Field  
The address field immediately follows the beginning of the frame and consists of 8-bits.  
These bits indicate the user assigned address of the slave device that is to receive the  
message sent by the attached master.  
Each slave must be assigned a unique address and only the addressed slave will respond to  
a query that contains its address. When the slave sends a response, the slave address  
informs the master which slave is communicating.  
Function Field  
The Function Code field tells the addressed slave what function to perform. MODBUS  
function codes are specifically designed for interacting with a PLC on the MODBUS  
industrial communications system. Command codes were established to manipulate PLC  
registers and coils. As far as the Transmitter is concerned, they are all just memory  
locations, but the response to each command is consistent with Modbus specifications.  
The high order bit in this field is set by the slave device to indicate an exception condition  
in the response message. If no exceptions exist, the high-order bit is maintained as zero in  
the response message.  
Data Field  
The data field contains information needed by the slave to perform the specific function or  
it contains data collected by the slave in response to a query. This information may be  
values, address references, or limits. For example, the function code tells the slave to read  
a holding register, and the data field is needed to indicate which register to start at and how  
many to read.  
Error Check Field (CRC)  
This field allows the master and slave devices to check a message for errors in  
transmission. Sometimes, because of electrical noise or other interference, a message may  
be changed slightly while it is on its way from one device to another. The error checking  
assures that the slave or master does not react to messages that have changed during  
transmission. This increases the safety and the efficiency of the MODBUS system.  
The error check field uses a CRC-16 check in the RTU mode.  
Page 10 of 23  
11/14/2006  
Rev. 14  
 
The following is an example of a function 03 call for data at memory location 03. The  
value returned by the instrument is the hex value 1E.  
Transmit from Host or Master  
Address Cmd Reg Reg  
HI LO  
00 03  
Count Count  
HI LO  
00 01  
CRC CRC  
HI LO  
74 0A  
01  
03  
Response from Transmitter  
Address Cmd Byte Byte Data Data  
Count Count HI LO  
CRC CRC  
HI Lo  
HI  
03 00  
LO  
02  
01  
00  
1E  
38  
4C  
Note that all the values are interpreted as hexadecimal values. The CRC calculation is  
based on the A001 polynomial for RTU Modbus. The function 04 command structure is  
similar to the 03 structure.  
The following is an example of a function 06 call to change data in register 01 to 200. The  
response from the instrument confirms the new value as being set.  
Transmit from Host or Master  
Address  
01  
Cmd Reg Reg Data Data  
HI LO HI LO  
00 01 00 C8  
CRC CRC  
HI LO  
D9 9C  
06  
Response from Transmitter  
Cmd Reg Reg Data Data CRC CRC  
Address  
01  
HI  
00  
LO  
01  
HI  
00  
LO  
C8  
HI  
D9  
LO  
9C  
06  
The Transmitter will respond to several error conditions. The three exception codes that  
will generate a response from the instrument are:  
01 – Illegal Function  
02 - Illegal Data Address  
03 – Illegal Data Value  
04 – Slave Device Failure  
The response from the Transmitter with an exception code will have the most significant  
bit of the requested function set followed by the exception code and the high and low CRC  
bytes.  
Page 11 of 23  
11/14/2006  
Rev. 14  
 
Memory Map  
NOTE: Modbus refers to the hexadecimal register location. These parameters are  
formatted as unsigned 16 bit integers. Any real number such as temperature can be  
evaluated as a signed number, other parameters are bit mapped words that must be  
evaluated as single bits are bit groups.  
BLOCK 0  
HEX  
00  
DEC  
PARAMETER  
Not used  
DESCRIPTION  
READ/WRITE  
READ ONLY  
READ/WRITE  
0
1
LOW BYTE - TIMER CONTROL  
BIT 0 – Timer Disabled (0), Timer Enabled (1)  
BIT 1 – 7 SPARE  
01  
TIME CONTROL  
SIOSET  
HIGH BYTE – SIO SETUP  
BITS 8 – 9 PARITY SETTING  
00 = Even Parity, 7 bits, 1 Stop bit  
01 = No Parity, 8 bits, 1 Stop bit  
10 = Odd Parity, 7 bits, 1 Stop bit  
BITS 10 – 11 RESPONSE DELAY  
0 = No delay applied to response  
1 = 10ms delay applied to response  
2 = 20ms delay applied to response  
3 = 30ms delay applied to response  
BITS 12 – 14 BAUD SELECT  
000 = 76.8K  
001 = 38.4K  
010 = 19.2K (DEFAULT)  
011 = 9600  
100 = 4800  
101 = 2400  
110 = 1200  
111 = 600  
BIT 15 HOST FORMAT  
0 = MSI (PROP)  
1 = MODBUS (DEFAULT)  
02  
03  
04  
2
3
4
TC_ZERO  
TC_SPAN  
LOW BYTE - TC ZERO CALIBRATION  
NUMBER  
READ/WRITE  
READ/WRITE  
READ/WRITE  
HIGH BYTE – TC SPAN CALIBRATION  
NUMBER  
LOW BYTE – MV ZERO CALIBRATION  
NUMBER  
MV_ZERO  
MV_SPAN  
HIGH BYTE – MV SPAN CALIBRATION  
NUMBER  
PROCESS FACTOR FOR CARBON OR  
DEWPOINT  
PF  
RANGE = 0 to 4095  
Page 12 of 23  
11/14/2006  
Rev. 14  
 
BLOCK 0  
DESCRIPTION  
DEFAULT = 150  
HEX  
05  
DEC  
5
PARAMETER  
READ/WRITE  
READ/WRITE  
EVENT  
LDLN  
LOW BYTE – INPUT EVENT  
CONFIGURATION  
Bits 0 – 3  
0000 = None  
0001 = Auto Mode Selected  
0010 = Remote Setpoint Selected  
0011 = Acknowledge alarms  
0100 = Timer Hold  
0101 = Timer End  
0110 = Timer Start  
0111 = Start probe test  
1000 = Process hold  
Bits 4 – 7 not used.  
UPPER BYTE – LOAD LINE  
LOW BYTE – COLD JUNCTION TRIM  
COLD JUNCTION TRIM (unsigned integer)  
RANGE = –128 TO +127 WHERE  
06  
6
CJTRM  
HADR  
1 COUNT = 1 DEG (C or F) and –128 = 65408  
HIGH BYTE – HOST ADDRESS  
BITS 0-7  
RANGE = 0 – 255  
07  
08  
7
8
SPARE  
SPARE  
CONFIG0  
Input Configuration  
BITS 0-3 TC Input TYPE  
0000 = B (DEFAULT)  
0001 = E  
READ/WRITE  
0010 = J  
0011 = K  
0100 = N  
0101 = R  
0110 = S  
0111 = T  
1000 = SPARE  
1001 = SPARE  
1010 = SPARE  
1011 = SPARE  
1100 = SPARE  
1101 = SPARE  
1110 = SPARE  
1111 = SPARE  
BIT 4 = SPARE  
BIT 5 0 = NO CJ APPLIED, 1 = CJ APPLIED  
BIT 6 0 = °F, 1 = °C  
BIT 7 0 = 60HZ FILTER  
BIT 8 – 11 Millivolt Input TYPE  
0000 = LINEAR (DEFAULT)  
All other bit combinations are spare  
BITS 12 – 15 are spare  
SETUP VALUES  
09  
9
CONFIG2  
Page 13 of 23  
11/14/2006  
Rev. 14  
 
BLOCK 0  
HEX  
DEC  
PARAMETER  
DESCRIPTION  
READ/WRITE  
BITS 0 - 4 OXYGEN EXPONENT  
RANGE = 0 to 31, where 2 = % and 6 = ppm  
DEFAULT = 2  
BITS 5 - 6 DISPLAY DECIMAL PLACE  
where:  
0 = no decimal point in display  
1 = Display XXX.X  
2 = Display XX.XX  
3 = Display X.XXX  
DEFAULT = 0  
BITS 8 – 12 REDOX METAL NUMBER  
RANGE = 0 – 14  
DEFAULT = 0  
BITS 13 – 15 SPARE  
0A  
10  
FAULT  
FAULT BIT MAP  
READ ONLY  
BIT 0 = Temperature Input Open  
BIT 1 = MV Input Open  
BIT 2 = Range of input is low  
BIT 3 = Range of input is high  
BIT 4 = Timer End  
BIT 5 = Probe Care Fault  
BITS 6 – 7 = SPARE  
BIT 8 = CPU Fault  
BIT 9 = Min Idle counter = 0  
BIT 10 = Keyboard failure, stuck key or a key  
was pressed during power up.  
BIT 11 = Flash Erase Failed  
BIT 12 = Flash Checksum Failed  
BIT 13 = EEPROM Checksum Failed  
BIT 14 = Flash/EEPROM Size Fault  
BIT 15 = ADC Fault  
0B  
11  
ASRC  
ANALOG OUT SOURCES  
LOW BYTE, ANALOG OUTPUT 1  
BITS 0 – 3  
READ/WRITE  
0000 = N/A  
0001 = Temperature  
0010 = Linear Input A  
0011 = Carbon value  
0100 = Dewpoint value  
0101 = Oxygen value  
0110 = Redox value  
0111 = Output Power  
1000 = Control Output 1  
1001 = Control Output 2  
1010 = Linear Input B  
1011 = Programmable*  
*For Programmable, write required output  
value into DACV1, where DACV1 = 0 is  
minimum output and  
DACV1 = 4096 is maximum output.  
BITS 4 – 7 SPARE  
Page 14 of 23  
11/14/2006  
Rev. 14  
 
BLOCK 0  
HEX  
DEC  
PARAMETER  
DESCRIPTION  
READ/WRITE  
HIGH BYTE, ANALOG OUTPUT 2  
BITS 8 – 12  
0000 = N/A  
0001 = Temperature  
0010 = Linear Input A  
0011 = Carbon value  
0100 = Dewpoint value  
0101 = Oxygen value  
0110 = Redox value  
0111 = Output Power  
1000 = Control Output 1  
1001 = Control Output 2  
1010 = Linear Input B  
1011 = Programmable*  
*For Reference Number and Programmable ,  
write required output value into DACV2, where  
DACV2 = 0 is minimum output and  
DACV2 = 4096 is maximum output.  
BITS 13 – 15 SPARE  
Special case: If Analog Output 1 = CONTROL  
OUTPUT 1 and Analog Output 2 = CONTROL  
OUTPUT 2 and the Control Mode is dual, then  
Analog Output 1 is 4-20ma for 0 to +100% PO  
and Analog Output 2 is 4-20ma for 0 to -100%  
PO.  
0C  
0D  
0E  
0F  
10  
12  
13  
14  
15  
16  
DAC_OFFSET_1 DAC 1 OFFSET CALIBRATION  
DAC_SPAN_1 DAC 1 SPAN CALIBRATION  
DAC_OFFSET_2 DAC2 OFFSET CALIBRATION  
READ/WRITE  
READ/WRITE  
READ/WRITE  
READ/WRITE  
READ/WRITE  
DAC_SPAN_2  
AOUTOF1  
DAC2 SPAN CALIBRATION  
ANALOG OUTPUT 1 OFFSET  
Minimum source value that correlates to  
minimum Analog Output of 4 mA. The source  
value is based on the selection in ASRC lower  
byte  
11  
17  
AOUTRN1  
ANALOG OUTPUT 1 RANGE  
READ/WRITE  
Maximum source value that correlates to  
maximum Analog Output of 20 mA. The  
source value is based on the selection in  
ASRC lower byte where  
12  
13  
18  
19  
AOUTOF2  
AOUTRN2  
ANALOG OUTPUT 2 OFFSET  
READ/WRITE  
READ/WRITE  
Minimum source value that correlates to  
minimum Analog Output of 4 mA. The source  
value is based on the selection in ASRC upper  
byte  
ANALOG OUTPUT 2 RANGE  
Maximum source value that correlates to  
maximum Analog Output of 20 mA. The  
Page 15 of 23  
11/14/2006  
Rev. 14  
 
BLOCK 0  
HEX  
DEC  
PARAMETER  
DESCRIPTION  
READ/WRITE  
source value is based on the selection in  
ASRC upper byte where  
14  
15  
16  
17  
20  
21  
22  
23  
SPARE  
SPARE  
SPARE  
TEMPFIL  
SPARE  
SPARE  
SPARE  
READ/WRITE  
READ/WRITE  
READ/WRITE  
READ/WRITE  
Temperature Input Filter in seconds  
Range = 0 to 3276. The higher the number  
the faster the reading update.  
DEFAULT = 1000  
BLOCK 1  
HEX  
18  
DEC  
24  
PARAMETER  
MVFIL  
DESCRIPTION  
READ/WRITE  
READ/WRITE  
Millivolt Input Filter in seconds  
Range = 0 to 3276. The higher the number  
the faster the reading update.  
DEFAULT = 1000  
19  
25  
AZERO  
LINEAR OFFSET, Y INTERCEPT LINEAR  
SCALING FOR INPUT A  
READ/WRITE  
1A  
1B  
26  
27  
ANUM  
LINEAR SPAN VALUE FOR INPUT A  
READ/WRITE  
READ/WRITE  
BZERO  
LINEAR OFFSET, Y INTERCEPT LINEAR  
SCALING FOR INPUT B  
1C  
1D  
14  
15  
BNUM  
PROC  
LINEAR SPAN VALUE FOR INPUT B  
READ/WRITE  
READ ONLY  
This value is the calculated process value  
shown as an integer. The decimal point and  
exponent values are required to determine the  
actual scaled value.  
Range = -999 to 9999.  
For example: If the process = oxygen, display  
decimal point = 2, and exponent = 6, and  
PROC = 1234, then the actual value and  
displayed as 12.34 ppm.  
1E  
1F  
16  
17  
COLDJCT  
TEMP  
COLD JUNCTION  
READ ONLY  
READ ONLY  
Where 1 COUNT = 1°F (°C), RANGE = -99 TO  
255°F (°C). Note this parameter is an  
unsigned integer.  
MEASURED TEMPERATURE  
Where temperature is presented in degrees C  
or F, based on the C/F setting. Note this  
parameter is an unsigned integer of  
temperature -2721 = 62815  
Range = max / min range of selected  
thermocouple.  
20  
21  
18  
19  
MV  
MEASURED MILLIVOLT  
READ ONLY  
READ/WRITE  
Where this value is scaled in 0.1 mV  
increments, i.e. 10001 = 1000.1.  
Range = 0 to 2000 mV.  
DACV1  
ANALOG OUTPUT 1  
0 to 4095 is 4 to 20 mA In dual mode 4mA = -  
100, 12mA = 0, 20mA = +100  
Page 16 of 23  
11/14/2006  
Rev. 14  
 
BLOCK 1  
HEX  
22  
DEC  
20  
PARAMETER  
DACV2  
DESCRIPTION  
READ/WRITE  
READ/WRITE  
ANALOG OUTPUT 2  
0 to 4095 is 4 to 20 ma In dual mode 4mA = -  
100, 12mA = 0, 20mA = +100  
SPARE  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
Page 17 of 23  
11/14/2006  
Rev. 14  
 
Operational Specifications  
Power input  
21.6 to 26.4 volts DC / 130mA  
Thermocouple input  
Thermocouple type  
Zero ºF  
800  
32  
Span ºF  
3000  
3000  
1300  
1300  
2300  
2300  
2000  
3000  
3000  
700  
B
C
E
J
K
32  
32  
32  
32  
N
NNM  
R
S
T
32  
300  
300  
32  
Bold shows default  
Accuracy after linearization +/- 1 deg F  
-200 to 2000 millivolts +/- 0.1 millivolt  
25 Megohm  
Millivolt input  
Input Impedance  
Cold junction compensation +/- 1 deg F  
DC outputs (Isolated)  
Isolation  
0 to 20mA (650max).  
1000V DC/AC  
Power input to signal inputs  
Power input to communications  
No Isolation  
Calculations  
Thermocouple input to Millivolt input, inputs must be differential.  
Percent carbon 0 – 2.55%, no CO compensation  
Dewpoint -99°F (-72.8°C) – 212 °F (100°C), no hydrogen  
compensation  
Percent oxygen. 0 – 20.9% (default)  
CAUTION  
DO NOT CONNECT ANY AC SOURCE OR LOAD TO  
INSTRUMENT CONTACTS  
Calibration Setups  
Millivolt Null  
Millivolt Span  
Page 18 of 23  
11/14/2006  
Rev. 14  
 
Thermocouple Null  
Thermocouple Span  
Cold Junction Trim  
Communications port RS-485 Half Duplex Only  
Protocol  
Baud rates  
Parity  
Modbus RTU  
1200, 2400, 4800, 9600, 19.2K (19.2K default)  
None  
Address  
1 – 254 (Address 1 is default)  
Housing  
Material  
Inflammability  
Polyamide PA non-reinforced  
Evaluation Class V0 (UL94)  
Temperature Range -40 to 100°C  
Dielectric Strength 600 kV/cm (IEC243-1)  
Mounting  
Snaps on to EN 50022 top hat (T) style DIN rail.  
Terminals  
Wire clamp screw terminals on four position removable terminal blocks.  
Wire Size  
AWG 24 – 12 flexible stranded, removable terminal blocks.  
Max. Torque  
0.8 Nm  
CAUTION: DO NOT CONNECT OR DISCONNECT HOUSING PLUGS  
WHILE MODULE IS POWERED OR UNDER LOAD.  
Weight  
10 oz  
Environmental Conditions  
Operating Temperature  
Storage Temperature  
-20 °C to 55 °C (-4 to 130 F)  
-40 °C to 85 °C (-40 to 185 F)  
Operating and Storage Humidity  
85% max relative humidity, noncondensing, from –20  
to 65°C  
Certifications and Compliance (PENDING)  
Safety  
EN 61010-1, IEC 1010-1  
Safety requirement for electrical equipment for measurement, control, and  
laboratory use, Part 1  
Electromagnetic Compatibility  
Immunity as specified by EN 50082-2  
Electrostatic discharge  
Electromagnetic RF fields  
EN 61000-4-2  
EN 61000-403  
Level 3: 8 kV air  
Level 3: 10 V/m  
80 MHz – 1 GHz  
Page 19 of 23  
11/14/2006  
Rev. 14  
 
Fast Transients  
EN 61000-4-4  
Level 4: 2 kV I/O  
Level 3: 2 kV power  
Level 3: 10 V/rms  
150 KHz – 80 MHz  
RF conducted interference EN 61000-4-6  
Emissions as specified by EN 50081-2  
RF Interference  
EN 55011  
Enclosure class A  
Power main class A  
Note: This instrument is designed for installation inside a grounded metal enclosure.  
Always observe anti-static precautions when installing or servicing any electronic device.  
Ground your body to discharge any static field before touching the body or terminals of any  
electronic device.  
This specification can change without notification.  
Page 20 of 23  
11/14/2006  
Rev. 14  
 

Krell Industries Stereo Amplifier WCES 2005 User Manual
Lexmark Printer X772e User Manual
Linn CD Player IKEMI GENKI User Manual
Makita Cordless Saw LSl21l User Manual
Marshall Amplification Musical Instrument Amplifier MF350 User Manual
Marshall electronic Flat Panel Television V R53P User Manual
Maxon Telecom Modem MM 6280IND User Manual
Mellerware Iron 2 3 5 0 02000W User Manual
Microsoft Server Windows NT 40 User Manual
Midland Radio Two Way Radio GXT300 User Manual